![]() |
[email protected] |
![]() |
3275638434 |
![]() |
![]() |
| Paper Publishing WeChat |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Biomass Production of Microalgae Scenedesmus in a Raceway and Tubular Photobioreactor
José F. Reyes, Paulina J. Vielma, Wilson D. Esquivel and Johannes P. de Bruijn
Full-Text PDF
XML 68 Views
DOI:10.17265/2162-5263/2025.06.001
Faculty of Agricultural Engineering, Universidad de Concepción, Casilla 537, Chillán, Chile
A comparison of culture biomass evolution for the microalgae Scenedesmus spinosus in a tubular pilot photobioreactor of 1.6 m³ and a raceway pilot photobioreactor of 1.2 m³ was carried out, using a nutritional Z-8 medium with the injection of carbon dioxide, and using an electronic system for monitoring and control of operational variables. For three weeks of testing, each culture was exposed to three pH levels of 6.5, 7.0 or 7.5, where random samples from both bioreactors were taken three times a week, to analyze pH, turbidity, transmittance at 640 nm and temperature. At the beginning and the end of culture, total solids were analyzed, and photographs were taken with a microscope to study the cell conditions of culture. This study revealed that the highest biomass production of Scenedesmus spinosus was obtained at pH 6.5 in the raceway photobioreactor, with a productivity of 371 g m-3 day-1, 0.78 % total solids, a turbidity of 858 NTU and 5% transmittance at the end of the culture.
Microalgae, photobioreactor, biomass, raceway, tubular.
José F. Reyes, Paulina J. Vielma, Wilson D. Esquivel and Johannes P. de Bruijn.Biomass Production of Microalgae Scenedesmus in a Raceway and Tubular Photobioreactor.José F. Reyes, Paulina J. Vielma, Wilson D. Esquivel and Johannes P. de Bruijn.
doi:10.17265/2162-5263/2025.06.001
2018.01.006.
[2] Bramstoft, R., Pizarro-Alonso, A., Jensen, I. G., Ravn, H., and Münster, M. 2020. “Modelling of Renewable Gas and Renewable Liquid Fuels in Future Integrated Energy Systems.” Applied Energy 268: 114869. https://doi.org/
10.1016/j.apenergy.2020.114869.
[3] Bwapwa, J. K., Anandraj, A., and Trois, C. 2017. “Possibilities for Conversion of Microalgae Oil into Aviation Fuel: A Review.” Renewable and Sustainable Energy Reviews 80: 1345-54. https://DOI:10.1016/j.rser.
2017.05.224.
[4] Song, Ch., Liu, Q., Qi, Y., Chen, G., Song, Y., Kansha, Y., and Kitamura, Y. 2019. “Absorption-Microalgae Hybrid CO2 Capture and Biotransformation Strategy—A Review.” International Journal of Greenhouse Gas Control 88: 109-17. https://DOI:10.1016/j.ijggc.2019.06.002.
[5] Choi, Y., Patel, A. K., Hong, M. E., Chang, W. S., and Sim, S. J. 2019. “Microalgae Bioenergy with Carbon Capture and Storage (BECCS): An Emerging Sustainable Bioprocess for Reduced CO2 Emission and Biofuel Production.” Bioresource Technology Reports 7: 100270. https://DOI:10.1016/j.biteb.2019.100270.
[6] Yang, Q., Li, H., Wang, D., Zhang, X., Guo, X., Pu, S., Guo, R., and Chen, J. 2020. “Utilization of Chemical Wastewater for CO2 Emission Reduction: Purified Terephthalic Acid (PTA) Wastewater-Mediated Culture of Microalgae for CO2 Bio-capture.” Applied Energy 276: 115502. https://DOI:10.1016/j.apenergy.2020.115502.
[7] Baicha, Z., Salar-García, M. J., Ortiz-Martínez, V. M., Hernández-Fernández, F. J., de los Ríos, A. P., Labjar, N., Lotfi, E., and Elmahi, M. 2016. “A Critical Review on Microalgae as an Alternative Source for Bioenergy Production: A Promising Low Cost Substrate for Microbial Fuel Cells.” Fuel Processing Technology 154: 104-16. https://DOI:10.1016/j.fuproc.2016.08.017.
[8] Dawes, C. J. 1986. “Botánica Marina.” Limusa. México D.F., México.
[9] Arashiro, L. T., Boto-Ordóñez, M., Van Hulle, S. W. H., Ferrer, I., and A. Garfí, A. 2020. “D.P.L. Rousseau, Natural Pigments from Microalgae Grown in Industrial Wastewater.” Bioresource Technology 303: 122894. https://doi.org/10.1016/j.biortech.122894.
[10] Pagels, F., Salvaterra, D., Amaro, H. M., and Guedes, A. C. 2020. “Fundamentals and Advances in Energy, Food, Feed, Fertilizer, and Bioactive Compounds.” Handbook of Microalgae-Based Processes and Products, Pigments from Microalgae 18: 465-92.
[11] Morais, K. C. C., Conceição, D., Vargas, J. V. C., Mitchell, D. A., Mariano, A. B., Ordonez, J. C., Galli-Terasawa, L. V., and Kava, V. M. 2021. “Enhanced Microalgae Biomass and Lipid Output for Increased Biodiesel Productivity.” Renewable Energy 163: 138-45. https://doi.org/10.1016/j.
renene.2020.08.082.
[12] Talaghat, M. R., Mokhtari, Sh., and Saadat, M. 2020. “Modeling and Optimization of Biodiesel Production from Microalgae in a Batch Reactor.” Fuel 280: 118578. https://DOI:10.1016/j.fuel.2020.118578.
[13] De Jesus, S. S., Ferreira, G. F., Moreira, L. S., and Filho, R. M. 2020. “Biodiesel Production from Microalgae by Direct Transesterification Using Green Solvents.” Renewable Energy 160: 1283-94. https://doi.org/10.1016/j.
renene.2020.07.056.
[14] Aziz, Md. M. A., Kassim, K. A., Shokravi, Z., Jakarni, F. M., Liu, H. Y., Zaini, N., Tan, L. S., Saiful Islam, A. B. M., and Shokravi, H. 2020. “Two-Stage Cultivation Strategy for Simultaneous Increases in Growth Rate and Lipid Content of Microalgae: A Review.” Renewable and Sustainable Energy Reviews 119: 109621. https://doi.org/10.1016/j.rser.2019.109621.
[15] Maxwell, J. R., Douglas, A. G., Eglinton, G., and McCormick, A. 1968. “The Botryococcens-Hydrocarbons of Novel Structure from the Alga Botryococcus Braunii.” Kützing Phytochemistry 7 (12): 2157-71. https://doi.org/10.1016/S0031-9422(00)85672-1.
[16] Brown, A. C., Knights, B. A., and Conway, E. 1969. “Hydrocarbon Content and Its Relationship to Physiological State in the Green Alga Botryococcus braunii.” Phytochemistry 8 (3): 543-7. https://doi.org/10.
1016/S0031-9422(00)85397-2.
[17] Fierro, S. 2004. “Utilización de microalgas inmovilizadas para la remoción de nutrientes de efluentes de cultivos acuícolas.” Tesis, Maestría en Ciencias. Centro de Investigación Científica y de Educación Superior de Ensenada. Ensenada, México.
[18] Pandey, A., Gupta, A., Sunny, A., Kumar, S., and Srivastava, S. 2020. “Multi-objective Optimization of Media Components for Improved Algae Biomass, Fatty Acid and Starch Biosynthesis from Scenedesmus sp. ASK22 Using Desirability Function Approach.” Renewable Energy 150: 476-86. https://DOI:10.1016/j.renene.2019.12.095.
[19] Rocha, D. N., Martins, M. A., Soares, J., Gomes, M., Vieira Vaz, M., de O. Leite, M., Covell, L., and Mendes, L. B. B. 2019. “Combination of Trace Elements and Salt Stress in Different Cultivation Modes Improves the Lipid Productivity of Scenedesmus spp.” Bioresource Technology 289: 121644. https://doi.org/10.1016/j.biortech.2019.1216
44.
[20] Keerthana, S., Sekar, S., Kumar, S. D., Santhanam, P., Divya, M., N. Krishnaveni, N., and Kim, M. K. 2020. “Scenedesmus Pecsensis Cultivation in Rice Mill Effluent Using Commercial Scale Nutrient Sources.” Bioresource Technology Reports 9: 100379. https://doi.org/10.1016/j.
biteb.2019.100379.
[21] Barboza-Rodríguez, R., Rodríguez-Jasso, R. M., Rosero-Chasoy, G., Rosales Aguado, M. L., and Ruiz, H. A. 2024. “Photobioreactor Configurations in Cultivating Microalgae Biomass for Biorefinery.” Bioresource Technology 394: 130208.
[22] Otalora, P., Skogestad, S., Guzmán, J. L., and Berenguel, M. 2024. “Modeling, Control and Online Optimization of Microalgae-Based Biomass Production in Raceway Reactors.” IFAC 58 (14): 235-40.




